Quantum electrodynamics near a dielectric half-space

نویسندگان

  • Claudia Eberlein
  • Dieter Robaschik
چکیده

1550-7998=20 Radiative corrections in systems near imperfectly reflecting boundaries are investigated. As an example, the self-energy of an unbound electron close to a single surface is calculated at one-loop level. The surface is modeled by a nondispersive dielectric half-space of a constant refractive index n. In contrast to previous, perfectly reflecting models, the evanescent modes in the optically thinner medium are taken into account and are found to play a physically very important role. The Feynman propagator of the photon field is determined and given in two alternative representations, which include the evanescent modes either as a separate contribution or through analytic continuation and deformation of the integration path for the normal component of the complex wave vector k. The evaluation of the self-energy diagram encounters a number of problems that are specific to the boundary dependence and to the imperfect reflection at the boundary. These problems and methods for their resolution are discussed in depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum electrodynamics of a free particle near dispersive dielectric or conducting boundaries

Quantum electrodynamics near a boundary is investigated by considering the inertial mass shift of an electron near a dielectric or conducting surface. We show that in all tractable cases the shift can be written in terms of integrals over the transverse-electric and transverse-magnetic reflection coefficients associated with the surface, in analogy to the Lifshitz formula for the Casimir effect...

متن کامل

An Analysis of Circulation of Decentralized Digital Money in Quantum Electrodynamics Space: the Econphysics Approach

The study aimed at showing how to create and release cryptocurrency, based on which one can introduce a new generation of this money that can continue its life in the quantum computers space and study whether cryptocurrency could be controlled or the rules should be rewritten in line with new technology. Regarding this, we showed the evolution of money and its uses in economic relations. Accord...

متن کامل

Born expansion of the Casimir-Polder interaction of a ground-state atom with dielectric bodies

Within leading-order perturbation theory, the Casimir-Polder potential of a ground-state atom placed within an arbitrary arrangement of dispersing and absorbing linear bodies can be expressed in terms of the polarizability of the atom and the scattering Green tensor of the body-assisted electromagnetic field. Based on a Born series of the Green tensor, a systematic expansion of the Casimir-Pold...

متن کامل

Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime

The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally int...

متن کامل

Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries_ A brief overview

Near-field electromagnetic heat transfer is of interest for a variety of applications, including energy conversion, and precision heating, cooling and imaging of nanostructures. This past decade has seen considerable progress in the study of near-field electromagnetic heat transfer, but it is only very recently that numerically exact methods have been developed for treating near-field heat tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006